Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$, then $\frac{d y}{d x}$ is equal to
MathematicsApplication of DerivativesNDANDA 2017 (Phase 2)
Options:
  • A 0
  • B 1
  • C $\frac{x-1}{x+1}$
  • D $\frac{x+1}{x-1}$
Solution:
2040 Upvotes Verified Answer
The correct answer is: 0
$\mathrm{y}=\sec ^{-1}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)+\sin ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)$
$=\cos ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)+\sin ^{-1}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)$
$=\frac{\pi}{2}\left(\because \sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}\right) \quad \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.