Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1} \frac{4 x}{1+5 x^{2}}+\tan ^{-1} \frac{2+3 x}{3-2 x}$, then $\frac{d y}{d x}=$
MathematicsDifferentiationJEE Main
Options:
  • A $\frac{1}{1+25 x^{2}}+\frac{2}{1+x^{2}}$
  • B $\frac{5}{1+25 x^{2}}+\frac{2}{1+x^{2}}$
  • C $\frac{5}{1+25 x^{2}}$
  • D $\frac{1}{1+25 x^{2}}$
Solution:
2818 Upvotes Verified Answer
The correct answer is: $\frac{5}{1+25 x^{2}}$
$$
\begin{aligned}
y &=\tan ^{-1} \frac{4 x}{1+5 x^{2}}+\tan ^{-1} \frac{2+3 x}{3-2 x} \\
&=\tan ^{-1} \frac{5 x-x}{1+5 x \cdot x}+\tan ^{-1} \frac{\frac{2}{3}+x}{1-\frac{2}{3} \cdot x} \\
&=\tan ^{-1} 5 x-\tan ^{-1} x+\tan ^{-1} \frac{2}{3}+\tan ^{-1} x \\
\Rightarrow & \frac{d y}{d x}=\frac{5}{1+25 x^{2}}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.