Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)+\tan ^{-1}\left(\frac{3+8 x}{3-3 x}\right)$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $\frac{1}{1+25 x^2}$
  • B $\frac{5}{1+25 x^2}$
  • C $\frac{1}{1+5 x^2}$
  • D $\frac{5}{1+5 x^2}$
Solution:
2484 Upvotes Verified Answer
The correct answer is: $\frac{5}{1+25 x^2}$
$\begin{aligned} & y=\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)+\tan ^{-1}\left(\frac{3+8 x}{8-3 x}\right)=\tan ^{-1}\left(\frac{5 x-x}{1+5 x \cdot x}\right)+\tan ^{-1}\left(\frac{\frac{3}{8}+x}{1-\frac{3}{8} \cdot x}\right) \\ & =\tan ^{-1}(5 x)-\tan ^{-1}(x)+\tan ^{-1}\left(\frac{3}{8}\right)+\tan ^{-1}(x) \\ & \Rightarrow y=\tan ^{-1}(5 x)+\tan ^{-1}\left(\frac{3}{8}\right) \\ & \Rightarrow \frac{d y}{d x}=\frac{1}{1+(5 x)^2} \times 5+0=\frac{5}{1+25 x^2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.