Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]$, then $\frac{d y}{d x}=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (14 Oct Shift 1)
Options:
  • A $\frac{-1}{3}$
  • B $\frac{-1}{4}$
  • C $\frac{1}{3}$
  • D $\frac{1}{4}$
Solution:
2465 Upvotes Verified Answer
The correct answer is: $\frac{-1}{4}$
Given $y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]$
$$
=\tan ^{-1} \sqrt{\frac{2 \cos ^{2} \frac{x}{4}}{2 \sin ^{2} \frac{x}{4}}}=\tan ^{-1}\left(\cot \frac{x}{4}\right)=\tan ^{-1}\left[\tan \left(\frac{\pi}{2}-\frac{x}{4}\right)\right]
$$
$\therefore y=-\frac{x}{4} \Rightarrow \frac{d y}{d x}=\frac{-1}{4}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.