Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left[\frac{5 \cos x-12 \sin x}{12 \cos x+5 \sin x}\right]$, then $\frac{d y}{d x}$ is equal to
MathematicsDifferentiationTS EAMCETTS EAMCET 2016
Options:
  • A 1
  • B -1
  • C -2
  • D $\frac{1}{2}$
Solution:
1415 Upvotes Verified Answer
The correct answer is: -1
Given,
$$
\begin{aligned}
y & =\tan ^{-1}\left[\frac{5 \cos x-12 \sin x}{12 \cos x+5 \sin x}\right] \\
& =\tan ^{-1}\left[\frac{\frac{5}{12}-\tan x}{1+\frac{5}{12} \tan x}\right]
\end{aligned}
$$
[divide by $12 \cos x$ in denominator and numerator]
$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{5}{12}\right)-\tan ^{-1}(\tan x) \\
y & =\tan ^{-1}\left(\frac{5}{12}\right)-x
\end{aligned}
$$
On differentiating both sides w.r.t. $x$, we get
$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left\{\tan ^{-1}\left(\frac{5}{12}\right)\right\}-\frac{d}{d x}(x)=0-1 \\
& \therefore \quad \frac{d y}{d x}=-1
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.