Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left(\frac{5 x+1}{3-x-6 x^2}\right)$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2022 (08 Aug Shift 2)
Options:
  • A $\frac{3}{9 x^2+12 x+5}+\frac{1}{2 x^2-2 x+1}$
  • B $\frac{1}{9 x^2+12 x+5}+\frac{1}{4 x^2-4 x+2}$
  • C $\frac{1}{9 x^2+12 x+5}-\frac{1}{4 x^2-4 x+2}$
  • D $\frac{3}{9 x^2+12 x+5}-\frac{1}{2 x^2-2 x+1}$
Solution:
2166 Upvotes Verified Answer
The correct answer is: $\frac{3}{9 x^2+12 x+5}+\frac{1}{2 x^2-2 x+1}$
$\begin{aligned} & y=\tan ^{-1}\left(\frac{5 x+1}{3-x-6 x^2}\right)=\tan ^{-1} \frac{(3 x+2)+(2 x-1)}{1-(3 x+2)(2 x-1)} \\ & \Rightarrow y=\tan ^{-1}(3 x+2)+\tan ^{-1}(2 x-1) \\ & \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+(3 x+2)} \times 3+\frac{1}{1+(2 x-1)^2} \times 2 \\ & \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{9 x^2+12 x+5}+\frac{2}{4 x^2-4 x+2} \\ & \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{9 x^2+12 x+5}+\frac{1}{2 x^2-2 x+1}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.