Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left(\frac{\log \left(\frac{\mathrm{e}}{x^2}\right)}{\log \left(e x^2\right)}\right)+\tan ^{-1}\left(\frac{4+2 \log x}{1-8 \log x}\right)$, then $\frac{d y}{d x}$ is
MathematicsDifferentiationMHT CETMHT CET 2023 (10 May Shift 2)
Options:
  • A $0$
  • B $\frac{1}{2}$
  • C $\frac{1}{4}$
  • D $1$
Solution:
2860 Upvotes Verified Answer
The correct answer is: $0$
$\begin{aligned} & y=\tan ^{-1}\left(\frac{\log \left(\frac{\mathrm{e}}{x^2}\right)}{\log \left(\mathrm{ex}^2\right)}\right)+\tan ^{-1}\left(\frac{4+2 \log x}{1-8 \log x}\right) \\ & =\tan ^{-1}\left(\frac{\log \mathrm{e}-\log x^2}{\log \mathrm{e}+\log x^2}\right)+\tan ^{-1}(4)+\tan ^{-1}(2 \log x) \\ & =\tan ^{-1}\left(\frac{1-2 \log x}{1+2 \log x}\right)+\tan ^{-1}(4)+\tan ^{-1}(2 \log x) \\ & \quad=\tan ^{-1}(1)-\tan ^{-1}(2 \log x)+\tan ^{-1}(4)+\tan ^{-1}(2 \log x) \\ & \therefore \quad y=\tan ^{-1}(1)+\tan ^{-1}(4) \\ & \therefore \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=0\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.