Search any question & find its solution
Question:
Answered & Verified by Expert
If $y=\tan \left(\cos ^{-1} x\right)$, then $\frac{d y}{d x}$ is equal to
Options:
Solution:
2327 Upvotes
Verified Answer
The correct answer is:
$\frac{-1}{x^2 \sqrt{1-x^2}}$
$y=\tan \left(\cos ^{-1} x\right)$
$\begin{aligned} \Rightarrow \quad \frac{d y}{d x} & =\sec ^2\left(\cos ^{-1} x\right) \cdot\left(\frac{-1}{\sqrt{1-x^2}}\right) \\ & =\sec ^2\left(\sec ^{-1} \frac{1}{x}\right)\left(\frac{-1}{\sqrt{1-x^2}}\right) \\ & =\left(\frac{1}{x}\right)^2 \times\left(\frac{-1}{\sqrt{1-x^2}}\right)=\frac{-1}{x^2 \sqrt{1-x^2}}\end{aligned}$
$\begin{aligned} \Rightarrow \quad \frac{d y}{d x} & =\sec ^2\left(\cos ^{-1} x\right) \cdot\left(\frac{-1}{\sqrt{1-x^2}}\right) \\ & =\sec ^2\left(\sec ^{-1} \frac{1}{x}\right)\left(\frac{-1}{\sqrt{1-x^2}}\right) \\ & =\left(\frac{1}{x}\right)^2 \times\left(\frac{-1}{\sqrt{1-x^2}}\right)=\frac{-1}{x^2 \sqrt{1-x^2}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.