Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\frac{1}{x}+\cos 2 x$, then $\frac{d^2 y}{d x^2}$ is equal to
MathematicsDifferentiationTS EAMCETTS EAMCET 2021 (06 Aug Shift 2)
Options:
  • A $\frac{2}{x^3}+4 y-\frac{4}{x}$
  • B $4 y-\frac{4}{x}-\frac{2}{x^3}$
  • C $\frac{2}{x^3}+\frac{4}{x}-4 y$
  • D $4 y-\frac{4}{x}-\frac{1}{x^3}$
Solution:
1128 Upvotes Verified Answer
The correct answer is: $\frac{2}{x^3}+\frac{4}{x}-4 y$
$\begin{aligned} & y=\frac{1}{x}+\cos 2 x \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{-1}{x^2}-2 \sin 2 x \Rightarrow \frac{d^2 y}{d x^2}=\frac{2}{x^3}-4 \cos 2 x \\ & =\frac{2}{x^3}-4\left(y-\frac{1}{x}\right)=\frac{2}{x^3}+\frac{4}{x}-4 y \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.