Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y(x)$ is the solution of the differential equation $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0,$ where $y(1)=\frac{1}{2} e^{-2},$ then:
MathematicsDifferential EquationsJEE MainJEE Main 2019 (11 Jan Shift 1)
Options:
  • A $y\left(\log _{e} 2\right)=\log _{e} 4$
  • B $y\left(\log _{e} 2\right)=\frac{\log _{e} 2}{4}$
  • C $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
  • D $y(x)$ is decreasing in (0,1)
Solution:
1573 Upvotes Verified Answer
The correct answer is: $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
Given differential equation is,

$\frac{d y}{d x}+\left(2+\frac{1}{x}\right) y=e^{-2 x}, x>0$

$\mathrm{IF}=e^{\int\left(2+\frac{1}{x}\right) d x}=e^{2 x+\ln x}=x e^{2 x}$

Complete solution is given by

$y(x) \cdot x e^{2 x}=\int x e^{2 x} \cdot e^{-2 x} d x+c$

$=\int x d x+c$

$y(x) \cdot e^{2 x} \cdot x=\frac{x^{2}}{2}+c$

Given, $y(1)=\frac{1}{2} e^{-2}$

$\therefore \quad \frac{1}{2} e^{-2} \cdot e^{2} \cdot 1=\frac{1}{2}+c \Rightarrow c=0$

$\therefore \quad y(x)=\frac{x^{2}}{2} \cdot \frac{e^{-2 x}}{x}$

$y(x)=\frac{x}{2} \cdot e^{-2 x}$

Differentiate both sides with respect to $x$

$y^{\prime}(x)=\frac{e^{-2 x}}{2}(1-2 x) < 0 \forall x \in\left(\frac{1}{2}, 1\right)$

Hence, $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.