Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=x^{n} \log x+x(\log x)^{n}$, then $\frac{d y}{d x}$ is equal to
MathematicsDifferentiationMHT CETMHT CET 2008
Options:
  • A $x^{n-1}(1+n \log x)+(\log x)^{n-1}[n+\log x]$
  • B $x^{n-2}(1+n \log x)+(\log x)^{n-1}[n+\log x]$
  • C $x^{n-1}(1+n \log x)+(\log x)^{n-1}[n-\log x]$
  • D None of the above
Solution:
1211 Upvotes Verified Answer
The correct answer is: $x^{n-1}(1+n \log x)+(\log x)^{n-1}[n+\log x]$
Given, $y=x^{n} \log x+x(\log x)^{n}$
$$
\begin{array}{c}
\frac{d y}{d x}=n x^{n-1} \log x+x^{n} \cdot \frac{1}{x}+x n(\log x)^{n-1}\left(\frac{1}{x}\right) \\
+1 \cdot(\log x)^{n} \\
=x^{n-1}(1+n \log x)+(\log x)^{n-1}[n+\log x]
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.