Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\left(x^x\right) x$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2022 (05 Aug Shift 1)
Options:
  • A $x^{x^2}(1+\log x)$
  • B $x \cdot x^{x^2}(1+\log x)$
  • C $x^{x^2}(1+2 \log x)$
  • D $x \cdot x^{x^2}(2 \log x+1)$
Solution:
2959 Upvotes Verified Answer
The correct answer is: $x \cdot x^{x^2}(2 \log x+1)$
$y=\left(x^x\right) x \Rightarrow \log y=x \log x^x=x^2 \log x$
Differentiating both sides w.r.t. $\mathrm{x}$
$\begin{aligned} & \frac{1}{y} \cdot \frac{d y}{d x}=x^2 \times \frac{1}{x}+2 x \times \log x \\ & \Rightarrow \frac{d y}{d x}=y(x+2 x \log x) \\ & \Rightarrow \frac{d y}{d x}=\left(x^x\right)^x \cdot x(1+2 \log x) \\ & \Rightarrow \frac{d y}{d x}=x^{x^2} \cdot x(1+2 \log x)\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.