Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If y=yx is the solution of the differential equation 1+e2xdydx+21+y2ex=0 and y0=0, then 6y'0+ylogc32 is equal to:
MathematicsDifferential EquationsJEE MainJEE Main 2022 (29 Jun Shift 2)
Options:
  • A 2
  • B -2
  • C -4
  • D -1
Solution:
1221 Upvotes Verified Answer
The correct answer is: -4

Given,

1+e2xdydx+21+y2ex=0

dy1+y2+2ex1+e2xdx=0 .........(i)

Now integrating both side we get,

dy1+y2+2ex1+e2xdx=0

tan-1y+2tan-1ex=c

y0=0

so, C=π2tan-1 y+2 tan-1ex=π2 ....(ii)

Now from equation (i), we get dydxx=0=-1

From equation (ii) we get, y (In 3)=-13

So, 6y'0+(y In 3)2=6-1+13=-4.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.