Search any question & find its solution
Question:
Answered & Verified by Expert
If \(y=\log _e \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\), then \(\tanh \left(\frac{y}{2}\right)=\)
Options:
Solution:
1512 Upvotes
Verified Answer
The correct answer is:
\(\tan \left(\frac{x}{2}\right)\)
Given,
\(y=\log _e \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\)
\(\begin{aligned}
& =\log _e\left(\frac{\tan \left(\frac{\pi}{4}\right)+\tan \frac{x}{2}}{1-\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{x}{2}\right)}\right)=\log _e\left(\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right) \\
\Rightarrow \quad & e^y=\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}} \Rightarrow \frac{e^y+1}{e^y-1}=\frac{2}{2 \tan \frac{x}{2}} \\
\Rightarrow \quad & \quad \frac{e^y-1}{e^y+1}=\tan \frac{x}{2} \Rightarrow \tan h\left(\frac{y}{2}\right)=\tan \left(\frac{x}{2}\right)
\end{aligned}\)
\(y=\log _e \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\)
\(\begin{aligned}
& =\log _e\left(\frac{\tan \left(\frac{\pi}{4}\right)+\tan \frac{x}{2}}{1-\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{x}{2}\right)}\right)=\log _e\left(\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right) \\
\Rightarrow \quad & e^y=\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}} \Rightarrow \frac{e^y+1}{e^y-1}=\frac{2}{2 \tan \frac{x}{2}} \\
\Rightarrow \quad & \quad \frac{e^y-1}{e^y+1}=\tan \frac{x}{2} \Rightarrow \tan h\left(\frac{y}{2}\right)=\tan \left(\frac{x}{2}\right)
\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.