Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(y=\sin ^{98}(x) \cdot \cos ^{39}(x)\), then find \(\frac{d y}{d x}\)
MathematicsDifferentiationAP EAMCETAP EAMCET 2020 (17 Sep Shift 1)
Options:
  • A \(\left(98 \cos ^{99} x \cdot \sin ^{38} x\right)+\left(39 \sin ^{40} x \cdot \cos ^{97} x\right)\)
  • B \(\left(99 \cos ^{98} x \cdot \sin ^{39} x\right)-\left(40 \sin ^{39} x \cdot \cos ^{98} x\right)\)
  • C \(\left(98 \cos ^{99} x \cdot \sin ^{38} x\right)-\left(39 \sin ^{40} x \cdot \cos ^{97} x\right)\)
  • D \(\left.99 \cos ^{98} x \cdot \sin ^{39} x\right)+\left(39 \sin ^{40} x \cdot \cos ^{97} x\right)\)
Solution:
1044 Upvotes Verified Answer
The correct answer is: \(\left(98 \cos ^{99} x \cdot \sin ^{38} x\right)-\left(39 \sin ^{40} x \cdot \cos ^{97} x\right)\)
\(y=\sin ^{98} x \cdot \cos ^{39} x\)
\(\begin{aligned}
& \frac{d y}{d x}=\sin ^{98} x \cdot 39 \cos ^{38} x(-\sin x) \\
& +\cos ^{39 x} \cdot 98 \sin ^{97} x(\cos x) \\
& =98 \sin ^{97} x \cdot \cos ^{40} x-39 \sin ^{99} x \cdot \cos ^{38} x \\
& =98 \cos ^{99} x \cdot \sin ^{38} x-39 \sin ^{40} x \cdot \cos ^{97} x \\
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.