Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(y=\sqrt{2 x+\cos ^2\left(2 x+\frac{\pi}{4}\right)}\), then \(\frac{d y}{d x}\) at \(x=\frac{\pi}{4}\).
MathematicsDifferentiationAP EAMCETAP EAMCET 2020 (18 Sep Shift 1)
Options:
  • A \(\frac{2 \sqrt{2}}{\sqrt{\pi+1}}\)
  • B \(2 \sqrt{\pi+1}\)
  • C \(\frac{2}{\sqrt{\pi+1}}\)
  • D \(\frac{\sqrt{2}}{\sqrt{\pi+1}}\)
Solution:
1008 Upvotes Verified Answer
The correct answer is: \(\frac{2 \sqrt{2}}{\sqrt{\pi+1}}\)
Given, \(y=\sqrt{2 x+\cos ^2\left(2 x+\frac{\pi}{4}\right)}\)
So, at \(x=\frac{\pi}{4}\)
\(\begin{aligned}
y & =\sqrt{\frac{\pi}{2}+\cos ^2\left(\frac{\pi}{2}+\frac{\pi}{4}\right)} \\
& =\sqrt{\frac{\pi}{2}+\sin ^2 \frac{\pi}{4}}=\sqrt{\frac{\pi}{2}+\frac{1}{2}}
\end{aligned}\)
Now, as \(y^2=2 x+\cos ^2\left(2 x+\frac{\pi}{4}\right)\)
On, differentiating w.r.t. \(x\), we get
\(\begin{aligned}
2 y \frac{d y}{d x} & =2-2 \sin \left(4 x+\frac{\pi}{2}\right) \\
& =2-2 \cos 4 x \Rightarrow \frac{d y}{d x}=\frac{1-\cos 4 x}{y} \\
\left.\Rightarrow \quad \frac{d y}{d x}\right|_{x=\frac{\pi}{4}} & =\frac{1-(-1)}{\sqrt{\frac{\pi}{2}+\frac{1}{2}}}=\frac{2 \sqrt{2}}{\sqrt{\pi+1}}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.