Search any question & find its solution
Question:
Answered & Verified by Expert
If $z=1+\cos \theta-i \sin \theta$ and $0 < \theta < \pi$, then $\left[|z-1|^2-\frac{|z|^2}{4}\right]^{1 / 2}=$
Options:
Solution:
1111 Upvotes
Verified Answer
The correct answer is:
$\sin \left(\frac{\theta}{2}\right)$
$\begin{aligned} & \text {Since, } Z=1+\cos \theta-i \sin \theta \\ & \Rightarrow z-1=\cos \theta-i \sin \theta \\ & \Rightarrow|z-1|=\left|e^{i \theta}\right|=1 \\ & \text { Now, }|z|=\sqrt{(1+\cos \theta)^2+\sin ^2 \theta}=\sqrt{2+2 \cos \theta} \\ & \therefore\left[|z-1|^2-\frac{|z|^2}{4}\right]^{\frac{1}{2}}=\left[1-\frac{1+\cos \theta}{2}\right]^{\frac{1}{2}}=\left[\frac{1-\cos \theta}{2}\right]^{\frac{1}{2}} \\ & \Rightarrow\left[|z-1|^2-\frac{|z|^2}{4}\right]^{\frac{1}{2}}=\left[\frac{1-1+2 \sin ^2 \frac{\theta}{2}}{2}\right]^{1 / 2}=\sin \frac{\theta}{2}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.