Search any question & find its solution
Question:
Answered & Verified by Expert
If $\frac{z-1}{z+1}$ is purely imaginary, then
Options:
Solution:
2090 Upvotes
Verified Answer
The correct answer is:
$|z|=1$
Let $\omega=\frac{z-1}{z+1}$
Then, using componendo and dividendo, we get
$$
\begin{array}{l}
\quad z=\frac{1+\omega}{1-\omega} \\
\Rightarrow \quad|z|=\left|\frac{\omega+1}{\omega-1}\right| \\
\Rightarrow \quad|z|=1 \\
\Rightarrow \quad|\omega+1|=|\omega-1|
\end{array}
$$
Let $6=u+i v$
Then, $|\omega+1|=|u+i v+1|$
$$
=|(u+1)+i v|=\sqrt{(u+1)^{2}+v^{2}}
$$
and $|\omega-1|=\sqrt{(t u-1)^{2}+v^{2}}$
$\therefore$ From Eq. (i)
$$
\begin{array}{rlr}
& \sqrt{(u+1)^{2}+v^{2}}=\sqrt{(u-1)^{2}+v^{2}} \\
\Rightarrow & (u+1)^{2}+v^{2} & =(v-1)^{2}+v^{2} \\
\Rightarrow & u=0
\end{array}
$$
$\therefore \omega=\frac{z-1}{z+1}$ is a pure imaginary number.
Then, using componendo and dividendo, we get
$$
\begin{array}{l}
\quad z=\frac{1+\omega}{1-\omega} \\
\Rightarrow \quad|z|=\left|\frac{\omega+1}{\omega-1}\right| \\
\Rightarrow \quad|z|=1 \\
\Rightarrow \quad|\omega+1|=|\omega-1|
\end{array}
$$
Let $6=u+i v$
Then, $|\omega+1|=|u+i v+1|$
$$
=|(u+1)+i v|=\sqrt{(u+1)^{2}+v^{2}}
$$
and $|\omega-1|=\sqrt{(t u-1)^{2}+v^{2}}$
$\therefore$ From Eq. (i)
$$
\begin{array}{rlr}
& \sqrt{(u+1)^{2}+v^{2}}=\sqrt{(u-1)^{2}+v^{2}} \\
\Rightarrow & (u+1)^{2}+v^{2} & =(v-1)^{2}+v^{2} \\
\Rightarrow & u=0
\end{array}
$$
$\therefore \omega=\frac{z-1}{z+1}$ is a pure imaginary number.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.