Search any question & find its solution
Question:
Answered & Verified by Expert
If $z(2-i)=(3+i)$, then $z^{38}=,($ where $z=x+$ iy $)$
Options:
Solution:
2538 Upvotes
Verified Answer
The correct answer is:
$-\left(2^{19}\right) \mathrm{i}$
We have $(x+i y)(2-i)=3+i$
$$
\therefore 2 x+(2 y-x) i+y=3+i
$$

Solving eq. (1) and (2), we get
$$
\begin{aligned}
& x=1, y=1 \Rightarrow z=1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right) \\
& \therefore \mathrm{z}=\sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right) \\
& \therefore \mathrm{z}^{38}=(\sqrt{2})^{38}\left(\cos \frac{38 \pi}{4}+\mathrm{i} \sin \frac{38 \pi}{4}\right) \\
& =(2)^{19}\left[\cos \left(9 \pi+\frac{\pi}{2}\right)+\mathrm{i} \sin \left(9 \pi+\frac{\pi}{2}\right)\right] \\
& =(2)^{19}\left(-\cos \frac{\pi}{2}-\mathrm{i} \sin \frac{\pi}{2}\right)=2^{19}(0-i) \\
& =-\left(2^{19}\right) \mathrm{i}
\end{aligned}
$$
$$
\therefore 2 x+(2 y-x) i+y=3+i
$$

Solving eq. (1) and (2), we get
$$
\begin{aligned}
& x=1, y=1 \Rightarrow z=1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\mathrm{i} \frac{1}{\sqrt{2}}\right) \\
& \therefore \mathrm{z}=\sqrt{2}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right) \\
& \therefore \mathrm{z}^{38}=(\sqrt{2})^{38}\left(\cos \frac{38 \pi}{4}+\mathrm{i} \sin \frac{38 \pi}{4}\right) \\
& =(2)^{19}\left[\cos \left(9 \pi+\frac{\pi}{2}\right)+\mathrm{i} \sin \left(9 \pi+\frac{\pi}{2}\right)\right] \\
& =(2)^{19}\left(-\cos \frac{\pi}{2}-\mathrm{i} \sin \frac{\pi}{2}\right)=2^{19}(0-i) \\
& =-\left(2^{19}\right) \mathrm{i}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.