Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|z-25 i| \leq 15$, then Maximum $\arg (z)-$ Minimum $\arg (z)$ is equal to
MathematicsComplex NumberWBJEEWBJEE 2022
Options:
  • A $2 \cos ^{-1}\left(\frac{3}{5}\right)$
  • B $2 \cos ^{-1}\left(\frac{4}{5}\right)$
  • C $\frac{\pi}{2}+\cos ^{-1}\left(\frac{3}{5}\right)$
  • D $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)$
Solution:
1031 Upvotes Verified Answer
The correct answer is: $2 \cos ^{-1}\left(\frac{4}{5}\right)$


$$
\because \cos \theta=\frac{15}{25}=\frac{3}{5}
$$
$\therefore \operatorname{Min} \arg (z)=\cos ^{-1}\left(\frac{3}{5}\right)$
$\operatorname{Max} \arg (z)=\pi-\cos ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)$
$\therefore$ difference $=\frac{\pi}{2}+\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{3}{5}\right)=2 \sin ^{-1}\left(\frac{3}{5}\right)=2 \cos ^{-1}\left(\frac{4}{5}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.