Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $z=r e^{i \theta}$, then $\left|e^{i z}\right|=$
MathematicsComplex NumberJEE Main
Options:
  • A $e^{r \sin \theta}$
  • B $e^{-r \sin \theta}$
  • C $e^{-r \cos \theta}$
  • D $e^{r \cos \theta}$
Solution:
1268 Upvotes Verified Answer
The correct answer is: $e^{-r \sin \theta}$
$\begin{aligned} & \text {If } z=r e^{i \theta}=r(\cos \theta+i \sin \theta) \\ & \Rightarrow i z=i r(\cos \theta+i \sin \theta)=-r \sin \theta+i r \cos \theta \\ & \text {or } e^{i z}=e^{(-r \sin \theta+i r \cos \theta)}=e^{-r \sin \theta} e^{r i \cos \theta} \\ & \text {or }\left|e^{i z}\right|=e^{-r \sin \theta} \| e^{r i \cos \theta}\left|=e^{-r \sin \theta}\right| e^{i r \cos \theta} \mid \\ & =e^{-r \sin \theta}\left[\left\{\cos ^2(r \cos \theta)+\sin ^2(r \cos \theta)\right\}\right]^{1 / 2}=e^{-r \sin \theta}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.