Search any question & find its solution
Question:
Answered & Verified by Expert
If $\quad z=\sec ^{-1}\left(\frac{x^4+y^4-8 x^2 y^2}{x^2+y^2}\right), \quad$ then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is equal to
Options:
Solution:
2008 Upvotes
Verified Answer
The correct answer is:
$2 \cot z$
Given that,
$$
\begin{aligned}
z & =\sec ^{-1}\left(\frac{x^4+y^4-8 x^2 y^2}{x^2+y^2}\right) \\
\Rightarrow \quad \sec z & =\frac{x^4+y^4-8 x^2 y^2}{x^2+y^2}
\end{aligned}
$$
Here, $\quad n=2$
$$
\begin{aligned}
\therefore \quad x \frac{\delta z}{\delta x}+y \frac{\delta z}{\delta y} & =2 \cdot \frac{\sec z}{\sec z \cdot \tan z} \\
& =2 \cot z
\end{aligned}
$$
$$
\begin{aligned}
z & =\sec ^{-1}\left(\frac{x^4+y^4-8 x^2 y^2}{x^2+y^2}\right) \\
\Rightarrow \quad \sec z & =\frac{x^4+y^4-8 x^2 y^2}{x^2+y^2}
\end{aligned}
$$
Here, $\quad n=2$
$$
\begin{aligned}
\therefore \quad x \frac{\delta z}{\delta x}+y \frac{\delta z}{\delta y} & =2 \cdot \frac{\sec z}{\sec z \cdot \tan z} \\
& =2 \cot z
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.