Search any question & find its solution
Question:
Answered & Verified by Expert
If $z=x-i y$ and $z^{\frac{1}{3}}=p+i q$, then $\frac{\left(\frac{x}{p}+\frac{y}{q}\right)}{\left(p^2+q^2\right)}$ is equal to
Options:
Solution:
2865 Upvotes
Verified Answer
The correct answer is:
$-2$
$-2$
$z=(p+i q)^3=p\left(p^2-3 q^2\right)-i q\left(q^2-3 p^2\right)$
$\Rightarrow \frac{x}{p}=p^2-3 q^2 \& \frac{y}{q}=q^2-3 p^2 \Rightarrow \frac{\frac{x}{p}+\frac{y}{q}}{\left(p^2+q^2\right)}=-2$
$\Rightarrow \frac{x}{p}=p^2-3 q^2 \& \frac{y}{q}=q^2-3 p^2 \Rightarrow \frac{\frac{x}{p}+\frac{y}{q}}{\left(p^2+q^2\right)}=-2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.