Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $z=x+i y$ is a complex number satisfying $\left|z+\frac{i}{2}\right|^2=\left|z-\frac{i}{2}\right|^2$, then the locus of $z$ is
MathematicsComplex NumberAP EAMCETAP EAMCET 2002
Options:
  • A $x$-axis
  • B $y$-axis
  • C $y=x$
  • D $2y=x$
Solution:
2761 Upvotes Verified Answer
The correct answer is: $x$-axis
We have,
$$
\left|z+\frac{i}{2}\right|^2=\left|z-\frac{i}{2}\right|^2
$$
$$
\begin{array}{rlrl}
\Rightarrow & \left|x+i y+\frac{i}{2}\right|^2 & =\left|x+i y-\frac{i}{2}\right|^2 \\
\Rightarrow & \left|x+i\left(y+\frac{1}{2}\right)\right|^2 & =\left|x+i\left(y+\frac{1}{2}\right)\right|^2 \\
\Rightarrow & x^2+\left(y+\frac{1}{2}\right)^2 & =x^2+\left(y-\frac{1}{2}\right)^2 \\
\Rightarrow & x^2+y^2+\frac{1}{4}+y & =x^2+y^2+\frac{1}{4}-y \\
\Rightarrow & & 2 y & =0 \\
\Rightarrow & y & =0
\end{array}
$$
Locus of $z$ is $x$-axis.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.