Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $z=x+i y, z^{1 / 3}=a-i b,$ then $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right)$

where $k$ is equal to
MathematicsComplex NumberBITSATBITSAT 2014
Options:
  • A 1
  • B 2
  • C 3
  • D 4
Solution:
1262 Upvotes Verified Answer
The correct answer is: 4
$z^{1 / 3}=a-i b \Rightarrow z=(a-i b)^{3}$

$\therefore x+i y=a^{3}+i b^{3}-3 i a^{2} b-3 a b^{2}$

$\Rightarrow x=a^{3}-3 a b^{2} \Rightarrow \frac{x}{a}=a^{2}-3 b^{2}$

and $y=b^{3}-3 a^{2} b \Rightarrow \frac{y}{b}=b^{2}-3 a^{2}$

So, $\frac{x}{a}-\frac{y}{b}=4\left(a^{2}-b^{2}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.