Search any question & find its solution
Question:
Answered & Verified by Expert
If $\left|z+\frac{2}{z}\right|=2$, then the maximum value of $|z|$ is
Options:
Solution:
2354 Upvotes
Verified Answer
The correct answer is:
1 + √3
Given, $\left|z+\frac{2}{z}\right|=2$

$\begin{aligned} & \Rightarrow|z| \leq 2+\left|\frac{2}{z}\right| \Rightarrow|z|^2-2|z|-2 \leq 0 \\ & \Rightarrow|z| \in[0,(1+\sqrt{3})]\end{aligned}$
$|Z|_{\text {max }}=1+\sqrt{3}$

$\begin{aligned} & \Rightarrow|z| \leq 2+\left|\frac{2}{z}\right| \Rightarrow|z|^2-2|z|-2 \leq 0 \\ & \Rightarrow|z| \in[0,(1+\sqrt{3})]\end{aligned}$

$|Z|_{\text {max }}=1+\sqrt{3}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.