Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Ifsin $\left(x+\frac{\pi}{3}\right)+\sin \left(x-\frac{\pi}{3}\right)=1$, then the value of $x$ in the interval $[0, \pi]$
MathematicsTrigonometric EquationsAP EAMCETAP EAMCET 2022 (07 Jul Shift 1)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{3}$
  • C $0$
  • D $\frac{\pi}{4}$
Solution:
1780 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}$
$\sin \left(x+\frac{\pi}{3}\right)+\sin \left(x-\frac{\pi}{3}\right)=1$
$\Rightarrow \quad 2 \sin x \cdot \cos \frac{\pi}{3}=1$
$[\because 2 \sin A \cdot \cos B=\sin (A+B)+\sin (A-B)]$
$\Rightarrow \quad 2 \sin x \cdot \frac{1}{2}=1$
$\sin x=1 \Rightarrow x=\frac{\pi}{2} \quad[\because x \in[0, \pi]]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.