Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Ifthe roots of the equation $3 \mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0$ are in the ratio $2: 3$, then which one of the following is correct?
MathematicsQuadratic EquationNDANDA 2013 (Phase 1)
Options:
  • A $8 a c=25 b$
  • B $8 a c=9 b^{2}$
  • C $8 b^{2}=9 a c$
  • D $8 b^{2}=25 a c$
Solution:
2643 Upvotes Verified Answer
The correct answer is: $8 b^{2}=25 a c$
Let roots of equation be $2 \alpha$ and $3 \alpha$
$2 \alpha+3 \alpha=-\frac{2 b}{3 a}$
$\Rightarrow \alpha=\frac{-2 b}{15 a}$...(i)
$2 \alpha \cdot 3 \alpha=\frac{\mathrm{c}}{3 \mathrm{a}} \Rightarrow \alpha^{2}=\frac{\mathrm{c}}{18 \mathrm{a}}$...(ii)
Now, put value of $\alpha$ in equation (ii) $\left(\frac{-2 b}{15 a}\right)^{2}=\frac{c}{18 a} \Rightarrow \frac{4 b^{2}}{225 a^{2}}=\frac{c}{18 a}$
$\Rightarrow 8 b^{2}=25 a c$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.