Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\text { In a } \triangle A B C, \frac{\Delta^2}{a^2+b^2+c^2}\left(\frac{1}{r_1^2}+\frac{1}{r_2^2}+\frac{1}{r_3^2}+\frac{1}{r^2}\right)=$
MathematicsProperties of TrianglesTS EAMCETTS EAMCET 2020 (10 Sep Shift 2)
Options:
  • A 0
  • B 1
  • C $\Delta$
  • D $\mathrm{S}$
Solution:
1263 Upvotes Verified Answer
The correct answer is: 1
$\frac{\Delta^2}{a^2+b^2+c^2}\left(\frac{1}{r_1^2}+\frac{1}{r_2^2}+\frac{1}{r_3^2}+\frac{1}{r^2}\right)$
$=\frac{\Delta^2}{a^2+b^2+c^2}\left[\frac{(s-a)^2}{\Delta^2}+\frac{(s-b)^2}{\Delta^2}+\frac{(s-c)^2}{\Delta^2}+\frac{s^2}{\Delta^2}\right]$
$=\frac{1}{a^2+b^2+c^2}\left[(s-a)^2+(s-b)^2+(s-c)^2+s^2\right]$
$=\frac{1}{a^2+b^2+c^2}$ $\left[\left(\frac{a+b+c}{2}-a\right)^2+\left(\frac{a+b+c}{2}-b\right)^2\right.$ $\left.+\left(\frac{a+b+c}{2}-c\right)^2+\left(\frac{a+b+c}{2}\right)^2\right]$
$=\frac{1}{a^2+b^2+c^2}$ $\left[\left(\frac{b+c-a}{2}\right)^2+\left(\frac{a+c-b}{2}\right)^2+\left(\frac{a+b-c}{2}\right)^2\right.$ $\left.+\left(\frac{a+b+c}{2}\right)^2\right]$


$=\frac{1}{a^2+b^2+c^2}\left[\frac{4\left(a^2+b^2+c^2\right)}{4}\right]=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.