Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a $\triangle A B C$, $a+b=3(1+\sqrt{3}) \mathrm{cm}$ and $a-b=3(1-\sqrt{3}) \mathrm{cm}$.
If angle $A$ is $30^{\circ}$, then what is the angle $B$ ?
MathematicsProperties of TrianglesNDANDA 2009 (Phase 2)
Options:
  • A $120^{\circ}$
  • B $90^{\circ}$
  • C $75^{\circ}$
  • D $60^{\circ}$
Solution:
2813 Upvotes Verified Answer
The correct answer is: $60^{\circ}$
Given, $a+b=3(1+\sqrt{3}) \ldots \ldots \ldots$. (1)
and $a-b=3(1-\sqrt{3}) \ldots \ldots \ldots .(2)$
By adding (1) and (2) we get
$(a+b)+(a-b)=3+3 \sqrt{3}+3-3 \sqrt{3}$
$\Rightarrow 2 a=6 \Rightarrow a=3$
$\therefore b=3-3+3 \sqrt{3}=3 \sqrt{3}$
By using sine rule, $\Rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}$
Given $\angle A=30 \quad \Rightarrow \frac{3}{\sin 30^{\circ}}=\frac{3 \sqrt{3}}{\sin B}$
$\Rightarrow \sin B=\sqrt{3} \times \frac{1}{2} \Rightarrow \sin B=\sin 60^{\circ}$
$\Rightarrow B=60^{\circ}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.