Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a $\triangle A B C, \frac{\cos C+\cos A}{c+a}+\frac{\cos B}{b}$ is equal to
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2001
Options:
  • A $\frac{1}{a}$
  • B $\frac{1}{b}$
  • C $\frac{c+a}{b}$
  • D $1$
Solution:
1475 Upvotes Verified Answer
The correct answer is: $\frac{1}{b}$
We have,
$\begin{aligned} & \frac{\cos C+\cos A}{c+a}=\frac{\cos C+\cos A}{2 R(\sin C+\sin A)} \\ = & \frac{2 \cos \frac{C+A}{2} \cos \frac{C-A}{2}}{2 R \cdot 2 \sin \frac{C+A}{2} \cos \frac{C-A}{2}}=\frac{1}{2 R} \tan \frac{B}{2}\end{aligned}$
Also,
$\frac{\cos B}{b}=\frac{\cos B}{2 R \sin B}=\frac{1}{2 R} \cdot \frac{1-\tan ^2 \frac{B}{2}}{2 \tan \frac{B}{2}}$
$\begin{aligned} & \therefore \quad \frac{\cos C+\cos A}{c+a}+\frac{\cos B}{b} \\ & =\frac{1}{2 R} \tan \frac{B}{2}+\frac{1}{2 R} \frac{1-\tan ^2 \frac{B}{2}}{2 \tan \frac{B}{2}} \\ & =\frac{1}{2 R}\left[\frac{2 \tan ^2 \frac{B}{2}+1-\tan ^2 \frac{B}{2}}{2 \tan \frac{B}{2}}\right]=\frac{1}{2 R}\left[\frac{1+\tan ^2 \frac{B}{2}}{2 \tan \frac{B}{2}}\right] \\ & =\frac{1}{2 R \sin B}=\frac{1}{b}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.