Search any question & find its solution
Question:
Answered & Verified by Expert
In a $\triangle A B C$, if $3 a=b+c$, then $\cot \frac{B}{2} \cot \frac{C}{2}$ is equal to :
Options:
Solution:
2216 Upvotes
Verified Answer
The correct answer is:
2
We have
$\cot \frac{C}{2} \cot \frac{B}{2}$
$=\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}=\frac{s}{s-a}$
$=\frac{2 s}{2 s-2 a}=\frac{a+b+c}{a+b+c-2 a}$
$=\frac{a+3 a}{3 a-a}=\frac{4 a}{2 a}=2 \quad[\because b+c=3 a]$
$\cot \frac{C}{2} \cot \frac{B}{2}$
$=\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}}=\frac{s}{s-a}$
$=\frac{2 s}{2 s-2 a}=\frac{a+b+c}{a+b+c-2 a}$
$=\frac{a+3 a}{3 a-a}=\frac{4 a}{2 a}=2 \quad[\because b+c=3 a]$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.