Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle A B C, a=6 \mathrm{~cm}, b=10 \mathrm{~cm}$ and $c=14 \mathrm{~cm}$. Then, the sum of the acute angles of the triangle is
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2021 (24 Aug Shift 1)
Options:
  • A $180^{\circ}$
  • B $120^{\circ}$
  • C $90^{\circ}$
  • D $60^{\circ}$
Solution:
2269 Upvotes Verified Answer
The correct answer is: $60^{\circ}$
For $\triangle A B C$



$$
\begin{aligned}
a & =6 \mathrm{~cm}, b=10 \mathrm{~cm} \text { and } c=14 \mathrm{~cm} \\
\cos A & =\frac{b^2+c^2-a^2}{2 b c} \\
& =\frac{10^2+14^2-6^2}{2 \times 10 \times 14}=\frac{100+196-36}{2 \times 10 \times 14} \\
& =\frac{296-36}{2 \times 10 \times 14}=\frac{260}{2 \times 10 \times 14} \\
\cos A & =\frac{13}{14}
\end{aligned}
$$
$\therefore A$ is acute angle.
$$
\begin{aligned}
\cos B & =\frac{a^2+c^2-b^2}{2 a c} \\
& =\frac{6^2+14^2-10^2}{2 \times 6 \times 14}=\frac{36+196-100}{2 \times 6 \times 14} \\
& =\frac{132}{2 \times 6 \times 14} \\
\cos B & =\frac{11}{14}
\end{aligned}
$$
$B$ is acute angle.
$$
\begin{aligned}
& \cos C=\frac{a^2+b^2-c^2}{2 a b}=\frac{6^2+10^2-14^2}{2 \times 6 \times 10}=\frac{136-196}{2 \times 6 \times 10} \\
& =\frac{-60}{2 \times 6 \times 10}=-\frac{1}{2} \\
& \cos C=-\frac{1}{2} \\
& C=120^{\circ} \\
& \therefore \text { Sum of acute angle }=A+B=180-C \\
& =180-120=60^{\circ} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.