Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\begin{aligned} & \text { In } \quad \Delta A B C \text {, } \\ & a\left(\cos ^2 B+\cos ^2 C\right)+\cos A(c \cos C+b \cos B) \text { is } \\ & \text { equal to }\end{aligned}$
MathematicsProperties of TrianglesTS EAMCETTS EAMCET 2005
Options:
  • A a
  • B b
  • C c
  • D a+b+c
Solution:
1856 Upvotes Verified Answer
The correct answer is: a
$\begin{aligned} & a\left(\cos ^2 B+\cos ^2 C\right)+\cos A(c \cos C+b \cos B) \\ & =a\left[\left(\frac{a^2+c^2-b^2}{2 a c}\right)+\left(\frac{a^2+b^2-c^2}{2 a b}\right)\right] \\ & +\frac{b^2+c^2-a^2}{2 b c}\left[c\left(\frac{b^2+a^2-c^2}{2 a b}\right)+b\left(\frac{a^2+c^2-b^2}{2 a c}\right)\right] \\ & =\frac{\left(a^2+c^2-b^2\right)^2}{4 a c^2}+\frac{\left(a^2+b^2-c^2\right)^2}{4 a b^2} \\ & +\frac{\left(b^2+c^2-a^2\right)\left(b^2+a^2-c^2\right)}{4 a b^2} \\ & +\frac{\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)}{4 a c^2}\end{aligned}$
$\begin{aligned} & =\frac{\left(a^2+c^2-b^2\right)\left(a^2+c^2-b^2+b^2+c^2-a^2\right)}{4 a c^2} \\ & \quad+\frac{\left(a^2+b^2-c^2\right)\left(a^2+b^2-c^2+b^2+c^2-a^2\right)}{4 a b^2} \\ & =\frac{a^2+c^2-b^2}{2 a}+\frac{a^2+b^2-c^2}{2 a}=\frac{2 a^2}{2 a}=a\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.