Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle A B C$, if $\frac{s-a}{11}=\frac{s-b}{12}=\frac{s-c}{13}$, then $\tan ^2\left(\frac{A}{2}\right)+\tan ^2\left(\frac{C}{2}\right)=$
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2018 (24 Apr Shift 1)
Options:
  • A $\frac{290}{429}$
  • B $\frac{290}{143}$
  • C $\frac{143}{33}$
  • D $\frac{113}{33}$
Solution:
1408 Upvotes Verified Answer
The correct answer is: $\frac{290}{429}$
Given that, $\frac{s-a}{11}=\frac{s-b}{12}=\frac{s-c}{13}=k$
$$
\begin{aligned}
& s-a=11 k \\
& s-b=12 k \\
& s-c=13 k
\end{aligned}
$$

On adding,
$$
\begin{aligned}
3 s-(a+b+c) & =36 k \\
3 s-2 s & =36 k \\
s & =36 k
\end{aligned} \quad[\text { as } a+b+c=2 s]
$$

Now, $\tan ^2 \frac{A}{2}+\tan ^2 \frac{C}{2}$
$$
\begin{aligned}
& =\frac{(s-b)(s-c)}{s(s-a)}+\frac{(s-a)(s-b)}{s(s-c)} \\
& =\frac{(12 k)(13 k)}{(36 k)(11 k)}+\frac{(11 k)(12 k)}{(36 k)(13 k)}=\frac{12}{36}\left[\frac{13}{11}+\frac{11}{13}\right] \\
& =\frac{1}{3} \cdot\left[\frac{169+121}{11 \times 13}\right]=\frac{290}{429}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.