Search any question & find its solution
Question:
Answered & Verified by Expert
In $\triangle A B C$, if $(a-b)(s-c)=(b-c)(s-a)$, then $r_1, r_2, r_3$ are in
Options:
Solution:
1494 Upvotes
Verified Answer
The correct answer is:
Arithmetic progression
Given: $(a-b)(s-c)=(b-c)(s-a)$
$\begin{aligned} & \Rightarrow[(s-a)-(s-b)](s-c)=[(s-b)-(s-c)](s-a) \\ & \Rightarrow(s-a)(s-c)-(s-b)(s-c) \\ & =(s-b)(s-a)-(s-c)(s-a)\end{aligned}$
Dividing by $(s-a)(s-b)(s-c)$ on both sides, we get
$\begin{aligned} & \frac{1}{(s-b)}-\frac{1}{(s-a)}=\frac{1}{(s-c)}-\frac{1}{(s-b)} \\ & \frac{2}{(s-b)}=\frac{1}{(s-a)}+\frac{1}{(s-c)} \\ & \Rightarrow \frac{2 \Delta}{(s-b)}=\frac{\Delta}{(s-a)}+\frac{\Delta}{(s-c)} \\ & \Rightarrow 2 r_2=r_1+r_3\end{aligned}$
So, $r_1, r_2, r_3$ are in arithmetic progression.
$\begin{aligned} & \Rightarrow[(s-a)-(s-b)](s-c)=[(s-b)-(s-c)](s-a) \\ & \Rightarrow(s-a)(s-c)-(s-b)(s-c) \\ & =(s-b)(s-a)-(s-c)(s-a)\end{aligned}$
Dividing by $(s-a)(s-b)(s-c)$ on both sides, we get
$\begin{aligned} & \frac{1}{(s-b)}-\frac{1}{(s-a)}=\frac{1}{(s-c)}-\frac{1}{(s-b)} \\ & \frac{2}{(s-b)}=\frac{1}{(s-a)}+\frac{1}{(s-c)} \\ & \Rightarrow \frac{2 \Delta}{(s-b)}=\frac{\Delta}{(s-a)}+\frac{\Delta}{(s-c)} \\ & \Rightarrow 2 r_2=r_1+r_3\end{aligned}$
So, $r_1, r_2, r_3$ are in arithmetic progression.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.