Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle A B C, \mathrm{~L}, \mathrm{M}, \mathrm{N}$ are points on $B C, C A, A B$ respectively, dividing them in the ratio $1: 2,2: 3,3: 5$. If the point $K$ divides $A B$ in the ratio $5: 3$, then
MathematicsThree Dimensional GeometryAP EAMCETAP EAMCET 2017 (26 Apr Shift 1)
Options:
  • A $\frac{5}{8}$
  • B $\frac{2}{5}$
  • C $\frac{3}{5}$
  • D $\frac{1}{15}$
Solution:
1464 Upvotes Verified Answer
The correct answer is: $\frac{1}{15}$
Given that, in $\triangle A B C, L, M, N$ are points on BC, $\mathrm{CA}$ and $\mathrm{AB}$ respectively, dividing in the ratio $1: 2,2: 3$ and $3: 5$. Also, point $K$ divides $A B$ in the ratio $5: 3$.


Now, according to the section formula,
$$
\begin{aligned}
& L=\frac{2 \mathbf{b}+\mathbf{c}}{3}, M=\frac{2 \mathbf{a}+3 \mathbf{c}}{5} \\
& N=\frac{3 \mathbf{b}+5 \mathbf{a}}{8}, K=\frac{5 \mathbf{b}+3 \mathbf{a}}{8} \\
& \overrightarrow{\mathrm{AL}}=\frac{2 \mathbf{b}+\mathbf{c}}{3}-\mathbf{a}=\frac{2 \mathbf{b}+\mathbf{c}-3 \mathbf{a}}{3} \\
& \overrightarrow{\mathrm{BM}}=\frac{2 \mathbf{a}+3 \mathbf{c}}{5}-\mathbf{b}=\frac{2 \mathbf{b}+3 \mathbf{c}-5 \mathbf{b}}{5} \\
& \overrightarrow{\mathrm{CN}}=\frac{3 \mathbf{b}+5 \mathbf{a}}{8}-\mathbf{c}=\frac{3 \mathbf{b}+5 \mathbf{a}-8 \mathbf{c}}{8} \\
& \overrightarrow{\mathrm{CK}}=\frac{5 \mathbf{b}+3 \mathbf{a}}{8}-\mathbf{c}=\frac{5 \mathbf{b}+3 \mathbf{a}-8 \mathbf{c}}{8} \\
& \because \quad \frac{\overrightarrow{\mathrm{AL}}+\overrightarrow{\mathrm{BM}}+\overrightarrow{\mathrm{CN}}}{\overrightarrow{\mathrm{CK}}} \mid=
\end{aligned}
$$
$\begin{aligned} & \left|\frac{\frac{2 \mathbf{b}+\mathbf{c}-3 \mathbf{a}}{3}+\frac{2 \mathbf{a}+3 \mathbf{c}-5 \mathbf{b}}{5}+\frac{3 \mathbf{b}+5 \mathbf{a}-8 \mathbf{c}}{8}}{\frac{5 \mathbf{b}+3 \mathbf{a}-8 \mathbf{c}}{8}}\right| \\ = & \left|\frac{(5 \mathbf{b}+3 \mathbf{a}-8 \mathbf{c})}{15(5 \mathbf{b}+3 \mathbf{a}-8 \mathbf{c})}\right|=\frac{1}{15}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.