Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle A B C, \tan \frac{A}{2}+\tan \frac{B}{2}=$
MathematicsProperties of TrianglesAP EAMCETAP EAMCET 2018 (22 Apr Shift 1)
Options:
  • A $\frac{\cot \frac{C}{2}}{4 s}$
  • B $\frac{2 c \cot \frac{c}{2}}{a+b+c}$
  • C $\frac{2 c \tan \frac{C}{2}}{s}$
  • D $\frac{c \tan \frac{c}{2}}{a+b+c}$
Solution:
2929 Upvotes Verified Answer
The correct answer is: $\frac{2 c \cot \frac{c}{2}}{a+b+c}$
$$
\begin{aligned}
& \text { }\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right)=\frac{\Delta}{s(s-a)}+\frac{\Delta}{s(s-b)} \\
& =\frac{\Delta}{s}\left\{\frac{1}{s-a}+\frac{1}{s-b}\right\}=\frac{c \Delta}{s(s-a)(s-b)} \\
& =\frac{2 c \Delta}{(a+b+c)(s-a)(s-b)} \\
& =\frac{2 c}{(a+b+c)} \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}=\frac{2 c \cot \frac{c}{2}}{a+b+c}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.