Search any question & find its solution
Question:
Answered & Verified by Expert
In a classroom $5 \%$ of the boys and $2 \%$ of the girls are taller than $1.6 \mathrm{~m}$. The class consists of $60 \%$ girl students. The probability that a randomly selected student is taken than $1.6 \mathrm{~m}$ is
Options:
Solution:
1160 Upvotes
Verified Answer
The correct answer is:
$\frac{4}{125}$
Probability of boys taller than $\mathrm{l} \cdot 6 \mathrm{mt}=\frac{5}{100} \Rightarrow \frac{1}{20}$ Probability of girls taller than $1 \cdot 6 \mathrm{mt}=\frac{2}{100} \Rightarrow \frac{1}{50}$
$$
\begin{array}{rlrl}
& P_x=P_B \cdot P_{\frac{t}{B}}+P_g \cdot P_{\frac{t}{g}} & =\frac{40}{100} \cdot \frac{1}{20}+\frac{60}{100} \cdot \frac{1}{50} \\
\Rightarrow \quad \frac{2}{100}+\frac{12}{1000} & \Rightarrow \frac{-(20)+12}{1000} \\
\Rightarrow \quad & \frac{32}{1000} & =\frac{4}{125}
\end{array}
$$
$$
\begin{array}{rlrl}
& P_x=P_B \cdot P_{\frac{t}{B}}+P_g \cdot P_{\frac{t}{g}} & =\frac{40}{100} \cdot \frac{1}{20}+\frac{60}{100} \cdot \frac{1}{50} \\
\Rightarrow \quad \frac{2}{100}+\frac{12}{1000} & \Rightarrow \frac{-(20)+12}{1000} \\
\Rightarrow \quad & \frac{32}{1000} & =\frac{4}{125}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.