Search any question & find its solution
Question:
Answered & Verified by Expert
In a double slit experiment, when the distance between slits is increased 10 times, while their distance from the screen is halved, then the fringe width
Options:
Solution:
1701 Upvotes
Verified Answer
The correct answer is:
becomes $\left(\frac{1}{20}\right)$ times the original
Case 1 Fringe width, $\beta_1=\frac{\lambda D_1}{d_1}$
Case 2 Fringe width, $\beta_2=\frac{\lambda D_2}{d_2}$
$\begin{array}{ll}\text { Given, } d_2= & 10 d_1, D_2=\frac{D_1}{2} \\ \Rightarrow & \frac{\beta_1}{\beta_2}=\frac{\lambda D_1}{d_1} \times \frac{d_2}{\lambda D_2} \\ \Rightarrow & \frac{\beta_1}{\beta_2}=\frac{D_1}{D_2} \times \frac{d_2}{d_1}=2 \times 10 \\ \Rightarrow & \frac{\beta_1}{\beta_2}=20 \\ \Rightarrow & \beta_2=\frac{1}{20} \beta_1\end{array}$
Case 2 Fringe width, $\beta_2=\frac{\lambda D_2}{d_2}$
$\begin{array}{ll}\text { Given, } d_2= & 10 d_1, D_2=\frac{D_1}{2} \\ \Rightarrow & \frac{\beta_1}{\beta_2}=\frac{\lambda D_1}{d_1} \times \frac{d_2}{\lambda D_2} \\ \Rightarrow & \frac{\beta_1}{\beta_2}=\frac{D_1}{D_2} \times \frac{d_2}{d_1}=2 \times 10 \\ \Rightarrow & \frac{\beta_1}{\beta_2}=20 \\ \Rightarrow & \beta_2=\frac{1}{20} \beta_1\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.