Search any question & find its solution
Question:
Answered & Verified by Expert
In a double slit interference experiment, the fringe width obtained with a light of wavelength $5900 Ã…$ was $1.2 \mathrm{~mm}$ for parallel narrow slits placed $2 \mathrm{~mm}$ apart. In this arrangement, if the slit separation is increased by one-and-half times the previous value, then the fringe width is
Options:
Solution:
2980 Upvotes
Verified Answer
The correct answer is:
$0.8 \mathrm{~mm}$
By Young's double slit interference experiment
$$
\beta=\frac{\lambda D}{d}
$$
The given
$$
\begin{aligned}
& \beta_1=1.2 \mathrm{~mm} \\
& \frac{d_2}{d_1}=1 \frac{1}{2}=1.5
\end{aligned}
$$
So, $\quad \beta \propto \frac{1}{d}$
$$
\begin{aligned}
& \frac{\beta_1}{\beta_2}=\frac{1 / d_1}{1 / d_2} \\
& \frac{\beta_1}{\beta_2}=\frac{d_2}{d_1}=1.5 \Rightarrow \frac{1.2}{\beta_2}=1.5 \\
\Rightarrow \quad & \beta_2=\frac{1.2}{1.5}=\frac{4}{5}=0.8 \mathrm{~mm}
\end{aligned}
$$
$$
\beta=\frac{\lambda D}{d}
$$
The given
$$
\begin{aligned}
& \beta_1=1.2 \mathrm{~mm} \\
& \frac{d_2}{d_1}=1 \frac{1}{2}=1.5
\end{aligned}
$$
So, $\quad \beta \propto \frac{1}{d}$
$$
\begin{aligned}
& \frac{\beta_1}{\beta_2}=\frac{1 / d_1}{1 / d_2} \\
& \frac{\beta_1}{\beta_2}=\frac{d_2}{d_1}=1.5 \Rightarrow \frac{1.2}{\beta_2}=1.5 \\
\Rightarrow \quad & \beta_2=\frac{1.2}{1.5}=\frac{4}{5}=0.8 \mathrm{~mm}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.