Search any question & find its solution
Question:
Answered & Verified by Expert
In a lift moving up with an acceleration of $5 \mathrm{~ms}^{-2}$, a ball is dropped from a height of $1.25 \mathrm{~m}$. The time taken by the ball to reach the floor of the lift is ... (nearly) $\left(g=10 \mathrm{~ms}^{-2}\right)$
Options:
Solution:
2108 Upvotes
Verified Answer
The correct answer is:
$0.4 \mathrm{~s}$
Distance travelled by ball during fall $=1.25 \mathrm{~m}$
By using relation $s=u t+\frac{1}{2} a t^{2}$
Here, $u=0, \quad s=1.25 \mathrm{~m}$,
$\begin{aligned}
a &=(g+a)=(10+5)=15 \mathrm{~m} / \mathrm{s}^{2} \\
\Rightarrow \quad 1.25 &=\frac{1}{2} \times 15 \times t^{2}, \Rightarrow t^{2}=\frac{2 \times 1.25}{15} \\
t^{2} &=0.16 \quad \Rightarrow t=0.4 \mathrm{~s}
\end{aligned}$
By using relation $s=u t+\frac{1}{2} a t^{2}$
Here, $u=0, \quad s=1.25 \mathrm{~m}$,
$\begin{aligned}
a &=(g+a)=(10+5)=15 \mathrm{~m} / \mathrm{s}^{2} \\
\Rightarrow \quad 1.25 &=\frac{1}{2} \times 15 \times t^{2}, \Rightarrow t^{2}=\frac{2 \times 1.25}{15} \\
t^{2} &=0.16 \quad \Rightarrow t=0.4 \mathrm{~s}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.