Search any question & find its solution
Question:
Answered & Verified by Expert
In a pure silicon, number of electrons and holes per unit volume are $1.6 \times 10^{16} \mathrm{~m}^{-3}$. If silicon is doped with Boron in a way that on doping hole density increases to $4 \times 10^{22} \mathrm{~m}^{-3}$. Then electron density in doped semiconductor will be
Options:
Solution:
1563 Upvotes
Verified Answer
The correct answer is:
$6.4 \times 10^9 \mathrm{~m}^{-3}$
$$
\begin{aligned}
& \mathrm{n}_{\mathrm{i}}=1.6 \times 10^{16} \mathrm{~m}^{-3}, \mathrm{n}_{\mathrm{h}}=4 \times 10^{22} \mathrm{~m}^{-3} \\
& \mathrm{n}_{\mathrm{e}} \mathrm{n}_{\mathrm{h}}=\mathrm{n}_{\mathrm{i}}^2 \\
& \therefore \mathrm{n}_{\mathrm{e}}=\frac{\mathrm{n}_{\mathrm{i}}^2}{\mathrm{n}_{\mathrm{h}}}=\frac{\left(1.6 \times 10^{16}\right)^2}{4 \times 10^{22}}=\frac{1.6 \times 1.6 \times 10^{32}}{4 \times 10^{22}} \\
& =6.4 \times 10^9 \mathrm{~m}^{-3}
\end{aligned}
$$
\begin{aligned}
& \mathrm{n}_{\mathrm{i}}=1.6 \times 10^{16} \mathrm{~m}^{-3}, \mathrm{n}_{\mathrm{h}}=4 \times 10^{22} \mathrm{~m}^{-3} \\
& \mathrm{n}_{\mathrm{e}} \mathrm{n}_{\mathrm{h}}=\mathrm{n}_{\mathrm{i}}^2 \\
& \therefore \mathrm{n}_{\mathrm{e}}=\frac{\mathrm{n}_{\mathrm{i}}^2}{\mathrm{n}_{\mathrm{h}}}=\frac{\left(1.6 \times 10^{16}\right)^2}{4 \times 10^{22}}=\frac{1.6 \times 1.6 \times 10^{32}}{4 \times 10^{22}} \\
& =6.4 \times 10^9 \mathrm{~m}^{-3}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.