Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a series LCR circuit, $\mathrm{C}=2 \mu \mathrm{F}, \mathrm{L}=1 \mathrm{mH}$ and $\mathrm{R}=10 \Omega$. The ratio of the energies stored in the inductor and the capacitor, when the maximum current flows in the circuit, is
PhysicsAlternating CurrentMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $5: 1$
  • B $3: 2$
  • C $1: 2$
  • D $1: 5$
Solution:
1810 Upvotes Verified Answer
The correct answer is: $5: 1$
In resonance condition (current is maximum),
$\therefore \quad \mathrm{X}_{\mathrm{c}}=\mathrm{X}_{\mathrm{L}}$
$\therefore \quad$ The ratio of energies in the inductor and capacitor is:
$\begin{aligned}
& \frac{\mathrm{U}_{\mathrm{L}}}{\mathrm{U}_{\mathrm{C}}}=\frac{\mathrm{LI}^2}{\mathrm{CV}^2}=\frac{\mathrm{L}}{\mathrm{CR}^2} \quad \ldots\left(\because \frac{\mathrm{I}}{\mathrm{V}}=\frac{1}{\mathrm{R}}\right) \\
& \frac{\mathrm{U}_{\mathrm{L}}}{\mathrm{U}_{\mathrm{C}}}=\frac{10^{-3}}{2 \times 10^{-6} \times 10^2} \\
& \frac{\mathrm{U}_{\mathrm{L}}}{\mathrm{U}_{\mathrm{C}}}=\frac{5}{1}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.