Search any question & find its solution
Question:
Answered & Verified by Expert
In a triangle $A B C$, if $a < b < c$ and $\frac{a^3+b^3+c^3}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8$, then the maximum value of $c$ is
Options:
Solution:
2297 Upvotes
Verified Answer
The correct answer is:
2
Given that, $\frac{a^3+b^3+c^3}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8 \quad \ldots$ (i)
Using sine rule for a triangle $A B C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
$\{$ where $2 R \rightarrow$ circumradius $\}$
$\therefore a=2 R \sin A, b=2 R \sin B, c=2 R \sin C$
Substituting the values of $a, b, c$ in Eq (i), we get
$\frac{(2 R \sin A)^3+(2 R \sin B)^3+(2 R \sin C)^3}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8$
or $\quad \frac{(2 R)^3\left(\sin ^3 A+\sin ^3 B+\sin ^3 C\right)}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8$
or $\quad(2 R)^3=8$ or $2 R=2$
Using sine rule for a triangle $A B C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
$\{$ where $2 R \rightarrow$ circumradius $\}$
$\therefore a=2 R \sin A, b=2 R \sin B, c=2 R \sin C$
Substituting the values of $a, b, c$ in Eq (i), we get
$\frac{(2 R \sin A)^3+(2 R \sin B)^3+(2 R \sin C)^3}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8$
or $\quad \frac{(2 R)^3\left(\sin ^3 A+\sin ^3 B+\sin ^3 C\right)}{\sin ^3 A+\sin ^3 B+\sin ^3 C}=8$
or $\quad(2 R)^3=8$ or $2 R=2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.