Search any question & find its solution
Question:
Answered & Verified by Expert
In a triangle $\mathrm{ABC}$ if $\mathrm{a}=2, \mathrm{~b}=3$ and $\sin \mathrm{A}=\frac{2}{3}$, then what is angle B equal to?
Options:
Solution:
2358 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{2}$
In $\Delta \mathrm{ABC}, \mathrm{a}=2, \mathrm{~b}=3$ and $\sin \mathrm{A}=\frac{2}{3}$
We know, $\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \frac{\frac{2}{3}}{2}=\frac{\sin B}{3}$
$\Rightarrow \frac{2}{6}=\frac{\sin B}{3} \Rightarrow \sin B=\frac{6}{6}=1$
$\Rightarrow B=\sin ^{-1}(1)$ ...(1)
$=\frac{\pi}{2}$.
We know, $\frac{\sin A}{a}=\frac{\sin B}{b}$
$\Rightarrow \frac{\frac{2}{3}}{2}=\frac{\sin B}{3}$
$\Rightarrow \frac{2}{6}=\frac{\sin B}{3} \Rightarrow \sin B=\frac{6}{6}=1$
$\Rightarrow B=\sin ^{-1}(1)$ ...(1)
$=\frac{\pi}{2}$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.