Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a triangle ABC with usual notations, $\frac{\cos A-\cos C}{a-c}+\frac{\cos B}{b}=$
MathematicsProperties of TrianglesMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $\frac{1}{b}$
  • B $\frac{2}{b}$
  • C $\frac{-1}{b}$
  • D $\frac{-2}{b}$
Solution:
1718 Upvotes Verified Answer
The correct answer is: $\frac{-1}{b}$
$\frac{\cos A-\cos C}{a-c}+\frac{\cos B}{b}$
$=\frac{b \cos A-b \cos C+a \cos B-c \cos B}{b(a-c)}$
$=\frac{(a \cos B+b \cos A)-(b \cos C+c \cos B)}{b(a-c)}$
$=\frac{c-a}{b(a-c)}=\frac{-1}{b}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.