Search any question & find its solution
Question:
Answered & Verified by Expert
In a triangle $\mathrm{ABC}$, with usual notations, if $\mathrm{c}=4$, then value of $(a-b)^2 \cos ^2 \frac{C}{2}+(a+b)^2 \sin ^2 \frac{C}{2}$ is
Options:
Solution:
1459 Upvotes
Verified Answer
The correct answer is:
$16$
$\begin{aligned} & (a-b)^2 \cos ^2 \frac{C}{2}+(a+b)^2 \sin ^2 \frac{C}{2} \\ & =\left(a^2-2 a b+b^2\right) \cos ^2 \frac{C}{2}+\left(a^2+2 a b+b^2\right) \sin ^2 \frac{C}{2} \\ & =\left(a^2+b^2\right)\left(\cos ^2 \frac{C}{2}+\sin ^2 \frac{C}{2}\right) \\ & \quad-2 a b \cos ^2 \frac{C}{2}+2 a b \sin ^2 \frac{C}{2} \\ & =a^2+b^2-2 a b\left(\cos ^2 \frac{C}{2}-\sin ^2 \frac{C}{2}\right) \\ & =a^2+b^2-2 a b \cdot \cos C \\ & =a^2+b^2-\left(a^2+b^2-c^2\right) \quad \ldots[\text { By Cosine rule }] \\ & =c^2=4^2=16\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.