Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a triangle $\mathrm{PQR}, \angle \mathrm{R}=\pi / 2$. If $\tan \left(\frac{\mathrm{p}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are roots of $\mathrm{ax}^2+\mathrm{bx}+\mathrm{c}=0$, where $\mathrm{a} \neq 0$, then which one is true ?
MathematicsQuadratic EquationWBJEEWBJEE 2010
Options:
  • A $c=a+b$
  • B $\mathrm{a}=\mathrm{b}+\mathrm{c}$
  • C $\mathrm{b}=\mathrm{a}+\mathrm{c}$
  • D $\mathrm{b}=\mathrm{c}$
Solution:
1144 Upvotes Verified Answer
The correct answer is: $c=a+b$
Hints: $\frac{\mathrm{P}}{2}+\frac{\mathrm{Q}}{2}=\frac{\pi}{2}-\frac{\mathrm{P}}{2}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$
$$
\begin{aligned}
& \tan \left(\frac{\rho}{2}+\frac{Q}{2}\right)=1, \frac{-b / a}{1-c / a}=1 \Rightarrow \frac{-b}{a-c}=1 \\
& -b=a-c \Rightarrow a+b=c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.