Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a YDSE, the light of wavelength $\lambda=5000 Ã$ is used, which emerges in phase from two slits a distance $\mathrm{d}=3 \times 10^{-7} \mathrm{~m}$ apart. Atransparent sheet of thickness $\mathrm{t}=1.5 \times 10^{-7} \mathrm{~m}$ refractive index $\mu=1.17$ is placed over one of the slits. what is the new angular position of the central maxima of the interference pattern, from the centre of the screen? Find the value of $y$.
PhysicsWave OpticsBITSATBITSAT 2015
Options:
  • A $4.9^{\circ}$ and $\frac{D(\mu-1) t}{2 d}$
  • B $4.9^{\circ}$ and $\frac{\mathrm{D}(\mu-1) \mathrm{t}}{\mathrm{d}}$
  • C $3.9^{\circ}$ and $\frac{D(\mu+1) t}{d}$
  • D $2.9^{\circ}$ and $\frac{2 \mathrm{D}(\mu+1) \mathrm{t}}{\mathrm{d}}$
Solution:
2729 Upvotes Verified Answer
The correct answer is: $4.9^{\circ}$ and $\frac{\mathrm{D}(\mu-1) \mathrm{t}}{\mathrm{d}}$
The path difference when transparent sheet is introduced $\Delta x=(\mu-1) t$

If the central maxima occupies position of nth fringe, then $(\mu-1) \mathrm{t}=\mathrm{n} \lambda=\mathrm{d} \sin \theta$

$$

\Rightarrow \sin \theta=\frac{(\mu-1) \mathrm{t}}{\mathrm{d}}=\frac{(1.17-1) \times 1.5 \times 10^{-7}}{3 \times 10^{-7}}=0.085

$$

Therefore, angular position of central maxima

$$

\theta=\sin ^{-1}(0.085)=4.88^{\circ} \approx 4.9

$$

For small angles, $\sin \theta=\theta=\tan \theta$

$$

\Rightarrow \quad \tan \theta=\frac{y}{D}

$$

$\therefore \quad \frac{\mathrm{y}}{\mathrm{D}}=\frac{(\mu-1) \mathrm{t}}{\mathrm{d}} \Rightarrow \mathrm{y}=\frac{\mathrm{D}(\mu-1) \mathrm{t}}{\mathrm{d}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.